Figure 3 shows the results for ZrO, units with grid current collection and copper matrices.

It is clear that Tg/TC has a marked effect on L/H (hyperbolic); however, it has little effect on 65/H
within the relevant range of Big and Tg, since this guantity is largely determined by Bis.

The numerical data can be approximated with reasonable precision by the following equations:
—3.13 0.1
L _ 96905712 ( _T&) S 0.028340.636 1g Bis] <~7:g> .
H » T H Te

Cc ¢

10

Figure 4 shows L/H and Big as functions of Tg/TC for electrodes with steel matrices; the curves are of
falling type, and the following functions provide a close fit for the range Tg/ Te ~1.5-2 for L/H as a function
of Tg/T¢ and Big as a function of Tg/T:

—3
L 744 (IE) +o.418(—T&)-—0.626,
H c / TC

11)
—9 p
Biy = 4.28 (T&) 05 L) 075
T, T,
Equations (10) and (11) allow one to define the sizes of the electrode blocks to provide a temperature of
Tc = 2000°K for a ZrO, module for various Big and Tg.
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PROPAGATION OF THERMAL DISTURBANCES IN MEDIA
WITH VOLUMETRIC HEAT ABSORPTION

S. I. Golaido, L. K., Martinson, UDC 536.24
and K. B. Pavlov

The solution of one-dimensional unsteady problems of nonlinear heat conduction'in the presence
of temperature-dependent volumetric heat absorption in the medium is discussed. The conditions
are found for the existence of generalized solutions describing temperature waves whose fronts
propagate in the medium with a finite velocity.

The investigations carried out in {1, 2] made it possible to formulate the conditions under which the
quasilinear equation of heat conduction

N. E. Bauman Moscow Higher Technical Institute, Translated from Inzhenerno-Fizicheskii Zhurnal,
Vol. 32, No. 1, pp. 124-130, January, 1977. Original article submitted May 8, 1975.
This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part

of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for §7.50.

79



P
ou _6u (1)

has generalized solutions in the form of temperature waves corresponding to the propagation of therma) dis-
turbances with a finite velocity in the medium. The presence of solutions of Eq. (1) in the form of temper-
ature waves presumes, in particular, a null temperature "background” through which the thermal disturbance
propagates. In this case for media with n > 1 the coefficient of thermal conductivity is reduced to zero at the
front of the temperature wave where u = 0, which is usually used to explain'the finite velocity of propagation
of the thermal disturbance (3].

In [4-8] it was indicated that volumetric heat absorption in the medium leads to slowing of the process
of propagation of thermal disturbances. It is therefore natural to assume that the finite velocity of propaga-
tion of thermal disturbances may be due not only to the reduction to zero of the coefficient of thermal conduc-
tivity at the front of the temperature wave, but also to the presence of volumetric heat absorption in the me-
dium, In other words, the conditions under which the velocity of propagation of the fronts of thermal distur-
bances is finite for processes described by the equation

ou

—— =L u—f(u

py ntt— f () (2)
can differ from the corresponding conditions for Eq. (1). The results presented below confirm this conclusion
and show, in particular, that in the presence of volumetric heat absorption a finite velocity of propagation of
the fronts of thermal disturbances also occurs for media with n =1, Inaddition, in a number of cases ther-
mal disturbances can also propagate with a finite velocity through a nonzero temperature "background. "

We can reduce the study of the unsteady process of propagation of thermal disturbances to the solution
of the following boundary-value problem in the region G: {x > 0, t > 0}:

%:i =Lu—~f, n>0,
u(x, 0) = U, = const > 0, 3)

u (0, t) = ¢ (f), u(oo, t)y =U,

We will be confined to consideration of the case when ¢(t) is a nondecreasing function for t > 0; f(u) > 0 and is
continuous for u > Uy, and f(U,) = 0. In this case f(u) can have a discontinuity of the first kind at the point u =
Uy 1.€e., in some cases f(U, + 0) = 0. We note that this statement of the problem also presumes that heat
fluxes are absent at infinity, i.e.,

ot g @)
0% lyaw

We can solve the boundary-value problem (3) using the Rothe method of straight lines, which is absolutely
stable and has an error O(7) [9], where T is the discrete step in the time variable. Convergence of the sequence
of functions constructed by the Rothe method to the solution of the boundary-value problem (3) can be brought
about by using procedures analogous to those used in [10].

We introduce a grid of straight lines t =tg =kr(k =0, 1, ...,) with some sufficiently small step 7 > 0.
Then, after the time variable t is made discrete, we obtain a system of ordinary differential equations for the
determination of the approximate values uk(x) of the function u(x, t) at the points t = tk:

Ly, = "%t & fuy, k=1, 2, ..., ®)
T
uy = U,
with the boundary conditions
w, (0) == @ (£), u,(o0) = U,. 6)

Making the substitution vk = uﬁ, we write (5) and (6) in the form
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(7)
U= Vo 1, (0) = D), v,(0) =V,

where .
F)=f@"), O¢)=Ilp)", V,=Us

In solving the boundary-value problems (7) for k =1, 2, ..., one successively determines the functions v,{x},
vy (%), etc.

One can show that
Up (%) > vy (%) {8)

Let us prove (8) for k =1. Assuming the opposite, we find that the function z = v;(x} — V, must reach a nega~
tive minimum at some point x = x% and at x = x?

dz a2z
0, — =90, —— >»0.
2 dx der ©
On the other hand, using (7) we have
1 1
d2 no__ V n
L — P+ (9)
dx? T

and one can always take 7 small enough that the right side of (9) is negative at x =x’. The contradiction ob~-

tained proves that z = 0 at any point x. Using this result one can similarly prove (8) for all k > 1.

It is obvious that the velocity of propagation of the front of a thermal disturbance will be finite for the
process described by (3} if for any k one can find x}; < « such that vi &) = V, for x = xk, where

By (tp — 0) = V, i‘:h —0 (10)

lx>xp—0

at the point x = xp of the temperature wave front. [The condition {10) assumes that the requirements of conti~-
nuity of the temperature and heat flux at the temperature wave front are satisfied. ]

The first step (k = 1) is decisive in the determination of the conditions under which the velocity of prop-
agation of the fronts of thermal disturbances is finite, since in the case of an infinite velocity the point x =
%; < = of the front, which separates the half-space x > 0 into a region x < x; which thermal disturbances from
the wall x = 0 have reached in a time 7 and an undisturbed region x = x; where v, = V;, would already be ab-
sent in the first step. At k =1 we have from (7)

1 1
i L
dst

+ F(v),
11)
0, (0) = @ (1), vy(o0) =V,

Since v; = V, satisfies Eq. (11), the boundary-value problem (11} can have a front solution only in the case
when the solution v; = V, is a singular solution of this equation [7, 8]. In this case the generalized solution
v;(x) of the problem (11), corresponding to a temperature wave with a finite velocity of propagation of the
front, will represent a particular solution of Eq. (11) for x < x,, satisfying the boundary condition at x =0
and the conditions (10), joined at the point x = x; of the front fo the singular solution v, (x} = V, for x = x,.

The generalized solution of the problem (11) can be written in the form
Ty d
s
- =X, — X { X< Xy,
5 VIRE L '
Vo
. 12)
pn=V, for x> x,

where
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The point s = V; is the only singular point of the integrands in (12) and (14), since with allowance for
the Hmitations imposed on the functions ¢ and f we have

RE>0 for Vo<s<O(). (14)

Thus, in order for the solution of the problem (11) to have the form of a front solution characteristic of a
temperature wave with a finite velocity of propagation of the front, itis necessary that the improper integral in
(14) have an integrable singularity at the pomt 8 =V,. Therefore, a front solution of the problem (11) exists
ifas s —V,

R(s) = 0l(s— Vo). (15)

where o < 2. The condition (15) imposes corresponding limitations on V; and f under which the solution of
the problem (11) will be a front solution,

First of all, when f(u) = 0 the condition (15) is satisfied if V; =0 (Uy = 0) and n > 1, Thus, in the ab-
sence of volumetric heat absorption in the medium temperature waves with a finite velocity of propagation of
the front can propagate only through a null "background® due to the reduction to zero of the coefficient of ther-
mal conductivity at the wave front.

With V, = 0 and n > 1 front solutions exist for any f(u), where it follows from (14) that volumetric heat
absorption in these cases always decreases the velocity of propagation of the temperature wave front., Ifn =1
or V; > 0 then the coefficient of thermal conductivity is not reduced to zero at the temperature wave front. In
these cases the problem (11) can also have front solutions when volumetric heat absorption occurs in the me-
dium (f # 0). In particular, with V, =0 (U; = 0) and n = 1 a front solution exists if f(u) = 0(uB), where g8 < n,
as u—0. The case of §— 0 corresponds to a discontinuity of the first kind in the function f at the point u =
and since n > 0 in the cases under consideration, in the presence of a discontinuity in fa finite velocity of prop-
agation of thermal disturbances will occur for any n.

If the condition (15) is satisfied, thenthe expression (12) determines some function v(x) which is centinu-
ous together with its first derivative for any x > 0. The second derivative of the function v, (x) is continuous
everywhere except perhaps for the point x = x;, where it loses continuity if the function fhas a discontinuity at
the point u = Uj.

An analysis of the solutions of the problem (7) for k > 1 analogous to that carried out for k =1 shows
that when the conditions found above are satisfied the generalized solutions of the problem (7) will also be
front solutions in the subsequent steps, where the front of the temperature wave will propagate with a finite
velocity through the undisturbed background (xx = Xk+). .

As an illustration of the above method of solving unsteady problems of nonlinear heat conduction of the
type of (3) let us congider in the region G: +{x > 6, t > 0 the problem

Ou _ Ou —uf (e —Uy), (16)

ot ox°
u(x, 0) =U, u(0, §) = U,, u(owo, ) =U,

where U, and Ux are certain constants with Ux > U, and 6 (z) is a step function which for z = 0 is determined
as

8(z) = limz" =
y-+0

{1 for z>0,
0 for z=0.

Applying the Rothe method of straight lines, we have the following system of boundary problems for uj =u(x,
k7):
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ty = Uy,

d’u Uy, — U
dx: =, —U,) + —hTh—“l— , (a7

U 0) =Up up(00) =U, E=1, 2, ...

For any k the generalized solution of the problem (17) can be obtained in the analytical form

P, (1) ™ Qi (x)e“}'x%— of®. 0 <x <y,

-3 k A, k
PE, (x) e Qs (x) €™ 1 plP, 0, Lx < 5,

U (x) = . 18)
(k) (x) e’vx‘i‘ Q )(x) e + Pfak)9 Ty <X xy,
U()y X >/ xh)
where the constants p j(k) and xj; and the coefficients of the polynomials
p;_k)(x) = a](fj.)xf 4 aj.i.’_lxi‘l 4.+ a;ﬁ)x + a}ﬁ}, .
Q) (x) = b{F)xl + VIR LS SN b8x - &)
are determined from the recurrent equations
I+2]L (=1
%y =0, A= [_T_] T, gt = Uy, pi = i’_f+_1_ =12 ..., &
a1 _._a"i:_‘l’!:‘__ 20 e [v(v + Da®,, +aftsh), ]
I 2hr T 2v}n !
b b;zzll,i—l piR) — bv+1D ‘rb§.‘f\’7 T b(k-‘” _il
BT T g i 2vit ’
‘Vzi—-—l i—2,...,2,1, j=k—1 k=2, ...,21,
0y (%) = [afy, oo+ ol oo TV +ai’i’v 1xje
- [bk-v h—y xk‘v—}— bk—-v k—v—lxk—v—l +. +bk—-v 1x] e—xxi_!_ p{,k)’ v=12 ..., k-1, Pr{x) = P’;;
i ’, ’
[, (%) — @ppy (X ] 5,
A(Il) = O' Afi)l - %}J {cPv(xv)“(.Dv-rl (xv) - (P”( V) }fp‘+l( - ;}e " ’
y=1 H
4 [, (%) — @y (2] ] 4
B(IU =0, B](i)l = -;_ ,_‘ {(Pv (X )——(qu (XV —' CPV( ) ;\’P‘H_I M }eAXW
A=l
=12 ..., E—1,
k (k) _ (k) Ué ;—
Ch — A {[A ~ BY U~—p1]——k—4} ,
a(k) 0= __I_(U'*____p(lk) - Bg?)___c(k)), b}ak—)x.o = —L(U _p(k)__B{k) Coy,
a0 = a0+ AP, B 0 =6 o+ B, j=2,3, ..., &,
2 otk (2 . i
xk:—;l—h-ln{xlu* PlUjBk - C ]}. (19

It is obvious that the solutions (18) have the form of front solutions. It follows from (19), in particular, that
for U, = 0 the velocity of propagation of thermal disturbances in the problem (16) is finite.

The distributions ug(x) for different values of k with Uy =1, Ux =2, and 7 = 10-% are presented in Fig. 1.
These distributions correspond to a temperature wave whose front x = X;(t) propagates through the nonzero
undisturbed temperature "background" with a finite velocity (the position of the front at different times is
marked with arrows in the figure). In this case the coefficient of thermal conductivity is a constant which
does not depend on the temperature and is not reduced to zero at the temperature wave front. The nature of
the motion of the temperature wave front is represented in Fig. 2
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Fig. 1. Temperature distribution at different times: 1) t; = 0.001; 2) t, = 0.005;
3) t; = 0.01; 4) t; = 0.02; 5) t; = 0.04,

Fig. 2. Motion of temperature wave front.
We also note that the evolutionary pfoblem (16) has as a limit as t — < the steady solution [4]

u, (x) = { g” ch (xpax — %) for X <pay

° for x> Xmags

where the quantity x,, ., =arccosh U«/U, determines the maximum depth of penetration of the thermal dis-
turbances from the wall, The steady distribution u,(x) is shown with a dashed line in Fig. 1.
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